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Machine learning models are susceptible to several privacy risks, including leaking sensitive information related
to their training data. Much of the work on machine learning privacy has focused on membership inference [1], the
task in which an adversary tries to infer whether some particular record is used in training a given model. However,
other granularities of data-centric privacy are often ignored and not as well understood. My research focuses on one
such granularity: the distribution level. As an example of distribution inference, consider an adversary probing a
face-image-based model [2]. The adversary would more likely be interested in inferring the presence of (any) photos
of an individual, not one particular image of them. The former is covered by distribution inference, while the latter
corresponds to membership inference. Other examples include inferring the accent of speakers in voice recognition
models [3] and learning ratios of characteristics like gender labels [4] which are relevant to fairness auditing [5, 6].
Recent works in the literature further show how these risks are not specific to “standard” models and apply to novel
settings and models as well, such as prompt-learning [7] and large language models [8].

In addition to my privacy-focused research which I will describe in more detail next, I also maintain a general
interest in adversarial machine learning (having had my first research experiences in adversarial examples [9] and
poisoning attacks [10]). Our most recent work on studying black-box adversarial attacks [11], for instance, shows
how current attack evaluations unnecessarily clip the number of iterations in gradient-based attacks, and how attack
success can nearly doubled when these arbitrary iteration limits are removed. I also participated1 in the Trojan
Detection Challenge2 recently, to get some hands-on experience with LLM jailbreaking and trojan detection. The
task was to detect triggers corresponding to certain target strings in a given model, while maximizing the recall of
finding these Trojans.

1 Dissertation Research: Distribution Inference

Since the main purpose of machine learning is to learn properties of a distribution, we need a way to define problematic
distribution inference. In our initial work [12], I began by formalizing distribution inference. Our definitions
standardize the adversary’s setup by setting it up as a cryptographic game similar to membership inference [13],
where the adversary’s goal is to distinguish between potential distributions G0(D) or G1(D) derived from a common
public distribution D. The distribution transformation functions G0 and G1 can be used to model differences between
the distributions to be distinguished, such as a difference in the ratios of females, or the presence of a group of users.
Our recent work on studying inference threat models in machine-learning models, with collaborators at Microsoft,
further underlines how distribution inference is very different from other threats like attribute inference and model
inversion [14].

Our setup also allows for more generic properties, such as graph-related properties [15] like the mean node-degree.
Motivated by this formalization, I also proposed a metric nleaked to capture inference leakage for certain cases of
distributions. The metric is designed to capture inherent distinguishability of distributions by relating observed
inference accuracy with the number of samples which, when used to launch a Bayes-optimal attack, would yield the
same observed inference accuracy. I derived theorems for computing nleaked for certain settings: distributions with
different priors over certain attributes, as well as the average node-degree of a graph, for both binary-classification
and direct regression over these distributions. For instance, distinguishing between distributions that have all males
or no makes is intuitively easier than distinguishing ones that have 50% or 60% males, as we observe empirically
(Figure 1a). Our metric nleaked formalizes a way to capture this nuance. Our evaluations reveal how direct inference
of underlying distributional properties via regression can be extremely potent (Figure 1b). In a follow-up work [16], I
proposed and evaluated a potent black-box attack that leaks information even when certain assumptions about the
adversary’s knowledge are relaxed, demonstrating the vulnerabilities related to distribution inference even in practical
settings. The proposed KL attack uses shadow models and computes KL-divergence between model predictions from
different models, using the divergence value to compare sets of shadow models and thus inferring which distribution
the target model is closer to. The attack uses available shadow models by comparing pair-wise scores between shadow
models, as opposed to a meta-classifier that adds an additional layer of obfuscation and does not explicitly capture
relationships between pairs of models. The KL attack outperforms the best white-box attacks while using a fraction
of shadow models.

1https://www.anshumansuri.me/post/tdc/
2https://trojandetection.ai/
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Figure 1: (a) Classification accuracy for distinguishing proportion of females in training data for Census-19 dataset,
using the KL attack. Performance of the attacks increases as the distributions diverge (α1 moves away from 0.5). (b)
Predicted α values (left y-axis) for models with training distributions for varying α values (x-axis), for all victim
models and regression meta-classifier experiments (green box-plots), along with mean squared error (right y-axis labels,
with different scales on the two graphs, and blue dots) RSNA BoneAge dataset, using the Permutation-Invariant
Network as a meta-classifier for inference. The diagonal gray dashed line represents the ideal case, where the regression
classifier would perfectly predict α.

Our results also demonstrate how techniques like differentially-private training (DP-SGD [17]), meant to defend
against membership inference, completely fail against distribution inference. These observations further illustrate
how privacy notions related to record-level privacy, such as Differential Privacy and membership inference, are not
sufficient for studying privacy leakage.

Our work also highlights how these inference risks are not limited to single-party settings and extend to other
scenarios such as inferring the membership of subjects (individual persons) across clients in federated learning
setups [18], a setup that is used by prominent services such as Google’s Gboard keyboard auto-completion. Similarly,
active attacks via attempts to introduce Trojans into models can also increase the risk of distribution inference in
downstream fine-tuned models [19], accentuating the extent of this risk in different training setups. Even when
considering adaptive detection methods, our experiments show how these Trojans can be rendered nearly undetectable
by any known methods while retaining most of their utility in boosting inference risk in downstream models.

2 Future Directions

As a researcher, I am driven to address challenges at the intersection of theory and experimentation within real-world
systems, prioritizing impactful solutions over empirical trial and error. I believe in addressing specific problems
that have a direct impact on how ML-based systems function and how users experience them, with a special focus
on privacy and security. My approach involves selecting and proposing projects based on their potential for both
immediate and long-term relevance.

2.1 Auditing

Current privacy auditing tools rely on membership inference [20] for quantifying privacy leakage. My recent
participation3 in the Membership-Inference Competition (MICO4) helped me see more clearly how even for membership
inference, attacks can be very brittle and sensitive to changes in training setups. Work on distribution inference,
however, has made it clear how distribution inference is a relevant inference concern, and is separate from membership
inference. Given this disconnect between distribution inference and other useful notions of privacy, I wish to understand
how distribution inference can be used to create better privacy auditing tools that go beyond simply evaluating
existing attacks on a given model. Distribution inference is especially relevant in modern-day settings, where users
contribute multiple records to datasets, and testing for record-based membership requires access to records to begin
with, which can be a strong assumption in many cases. We envision an auditing tool that utilizes all available
information, including data and white-box access to the model, to predict leakage with a usable and quantitative
metric.

3https://www.anshumansuri.me/post/mico/
4https://microsoft.github.io/MICO/
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While black-box access to models (under certain assumptions) is sufficient for membership inference [21], it is
unclear whether the same holds for user-level inference or distribution inference, or how these conclusions change when
assumptions (such as using SGLD instead of SGD [22]) are modified to include realistic machine-learning designs, such
as regularization and batch-normalization [23]. At the same time, attacks that use white-box access should be efficient
enough for thorough privacy analysis for a given model and data in its pipeline. Thus, straightforward extensions of
meta-classifier-based attacks may not be feasible for auditing, and there is a need for specialized auditing-oriented
attacks. Auditing tools can help model trainers get a more holistic view of potential leakage, which is more relevant
at the distribution level than record level in today’s data paradigm, where data sources contain multiple records per
user, and users care about leakage of any of their data, not just one particular record.

2.2 Mitigating Inference Risks

The standard privacy defense of adding noise to enforce Differential Privacy does not work, and the only known
effective defenses that work are vulnerable to adaptive attacks [16]. Chen and Ohrimenko [24] recently proposed a
theoretically-grounded defense mechanism, but it only applies to statistical queries and not machine-learning models.
Current works [25] suggest causality-aligned learning as a potential defense against distribution inference. Our
preliminary experiments with CyCNN [26], a learning technique designed to provide better domain generalization,
suggest that this indeed might be the case. I wish to further explore this connection with techniques explicitly
designed with causality in mind like MatchDG [27] and explore theoretical connections between distribution inference
and causality.

Some aspects of a distribution (such as the types of digits in an MNIST classifier) may be tied closely to the given
task of a machine learning model and hence, may be unavoidable for a good classification model. At the same time,
some properties may not be very useful for an inference adversary (such as the average color of images). Having a
formal and principled distinction between such properties can not only help focus on relevant inference cases, but also
lead to principled defenses against distribution inference. A good classifier should ignore style-specific features, but it
remains unclear how much of content-related properties the classifier may actually memorize, and what portion of
such memorization may be unavoidable. Recent analyses for the case of distributional membership inference [25]
shows how under perfect invariance-learning assumptions, user-level membership inference under black-box access
is impossible. I would like to further extend these analyses to better understand leakage for other distributional
properties, and work on relaxing assumptions around perfect invariance learning.

2.3 Large Language Models (LLMs)

There is an widespread interest in LLMs, with users interacting with such machine learning models at an unprecedented
scale. These models are trained on titanic volumes of data scraped from the Internet and conversations via agents like
ChatGPT, blowing up privacy and security-related concerns. Our recent exploration of LLMs [28], in collaboration with
EPFL and others, studies how memorization of information is inherently different from traditional machine-learning
models. The interactive nature of these models also creates new risks and scope for attacks such as clean-text prompt
instruction modification [29].

I am interested in extending auditing techniques for measuring privacy leakage in LLMs. Techniques that require
any form of shadow-model training are immediately inapplicable for such large models, given their scale and the
time and resource required to train them. The key thus lies in having efficient techniques that can audit these
models without having to train a lot of large shadow models. In a recent collaboration with the University of
Washington [30], we studied leakage via membership-inference attacks and how under proper evaluation settings,
leakage is near-zero (attack performance close to random guess) for nearly all data and models. This further underlines
how the current approach of privacy auditing using membership-inference would not work well, as the absence of
detectable membership inference in this case is not conclusive, and may as well arise from a lack of potent attacks
specifically designed for LLMs. Recent exploration on interpretability [31] shows promise, and it may be possible to
modify/extend such techniques to measure leakage via “interpretability”.

In my research approach, I prioritize problems that captivate me and hold intrinsic value for the research community,
steering clear of excessive influence from current trends. For instance, our work on distribution inference was inspired
by a concept introduced several years ago, showcasing my inclination to explore beyond immediate “hot” topics.
While my expertise lies in ML privacy and security, I actively try to diversify my knowledge, as I did in my recent
explorations into Large Language Models (LLMs) and causal learning. Regarding research areas, I favor a focused
approach, committing time to make substantial contributions to progress within a specific domain, while encouraging
other researchers to bring their ideas and perspectives in their research on that topic. Emphasizing the importance of
proper coding practices, I view it as an opportunity to enhance research utility rather than a mere task for “releasing
code for some paper.” Leading a research group, I envision clusters of students tackling interconnected yet distinct
problems, fostering meaningful contributions to each other’s projects.
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